Mehr Sicherheit im Haus: Hybrid-Sensor entdeckt Kabelbrand bevor es brennt
Eine häufige Ursache für Brände ist die Elektrizität, die durch schmorende Elektrokabel entstehen können. Nun haben Wissenschaftler des Karlsruher Institut für Technologie (KIT) und der Hochschule Karlsruhe maßgeblich an der Entwicklung neuartiger Sensortechnologie mitgewirkt, durch die solche Schwelbrände frühzeitig zu entdeckt werden können. Sogenannte Hybrid-Sensoren, die Messprozesse und deren informationstechnologische Auswertung kombinieren, analysieren die Kunststoff-Ausdünstungen überhitzter Isolierkabel und können so Schmorbrände früher erkennen, als dass sie von außen am Kabel sichtbar werden.
Dass ein Kabel schmort, lässt sich mit Glück bemerken, bevor es brennt: Die Kunststoffummantelung verfärbt sich und es riecht brenzlig. Hybrid-Sensoren könnten die Gefahr von Kabelbränden allerdings noch früher erkennen, schon bevor Auge und Nase sie wahrnehmen: Sie spüren Gase auf, die sich durch die Erwärmung aus der Kunststoff-Ummantelung lösen. Zusätzlich bieten sie eine zuverlässige Identifikation und Analyse, um welches Gasgemisch es sich handelt und wie hoch die Konzentration des Gasgemisches ist.
Darüber hinaus können sie auch Störgase, wie zum Beispiel Propen oder Kohlenmonoxid, erkennen und somit Fehlalarme ausschließen. Möglich wird dies, weil die Hybrid-Sensoren nicht nur über einen Gas detektierenden Sensorchip, sondern auch über Rechenleistung und Algorithmen für die Auswertung der Messdaten verfügen. „Die Kombination des intelligenten Auswertungsverfahrens mit der physikalischen Messung ist Kern der Entwicklung“, erläutert Dr. Hubert Keller, Projektleiter Simulation und Messtechnik am Institut für Angewandte Informatik des KIT.
Die sehr empfindlichen und dadurch höchst zuverlässigen Hybrid-Sensoren könnten die Sicherheit in Kabelschächten erhöhen. Ihre Fähigkeit, Gasgemische aufzuspüren und Einzelgas-Konzentrationen zu bestimmen, ließe sich aber auch nutzen, um in der Lebensmittelüberwachung giftige Schimmelpilzgase nachzuweisen, um in Düngemittelsilos vor dem Auftreten explosiver Gase zu warnen oder um Leckagen an Erdgasleitungen zu entdecken. „Hybrid-Sensoren lassen sich universell als einzelnes Sensorsystem oder als Netzwerk und auch kombiniert mit klassischen Sicherheitsansätzen wie Infrarotkameras einsetzen“, betont Keller.
„Für die Entwicklung des Sensors nutzen wir den Effekt, dass vielerlei Gase in Abhängigkeit der Temperatur ganz unterschiedlich mit gassensitiven Metalloxiden reagieren“, sagt Professor Dr. Heinz Kohler vom Institut für Sensorik und Informationssysteme (ISIS) an der Hochschule Karlsruhe – Technik und Wirtschaft. „Auf diesem Effekt haben wir einen eigenbeheizten, temperaturgeregelten Sensorchip mit vier Einzelsensoren – Sensorarray – aufgebaut.“ Das Sensorarray wird zyklisch erhitzt und wieder abgekühlt und liefert bei simultaner Messung des elektrischen Widerstands oder des Leitwertes vier verschiedene, spezifische Leitwert-Signaturen, deren Auswertung Aufschluss über die Zusammensetzung und Konzentration des Gases gibt. In der aktuellen Ausgabe des Fachmagazins Sensors & Transducers Journal berichten die Wissenschaftler über ihre zukunftsweisende Forschung zur Hybrid-Sensortechnologie.
Die Verschmelzung von Sensortechnologie und Analysemethode haben die Informatiker und Mathematiker des KIT und die Wissenschaftler der Hochschule Karlsruhe – Technik und Wirtschaft sowie zwei Industriepartner im Zuge des vom Bundesministerium für Bildung und Forschung über drei Jahre mit rund 1,3 Millionen Euro geförderten Projekts Hybrid-Sensor-Plattform entwickelt. Das weltweit beachtete Verfahren wurde bereits zweimal auf internationalen Konferenzen mit einem Best Paper Award für herausragende Forschungsbeiträge ausgezeichnet.
Quelle und weiterführende Informationen: Karlsruher Institut für Technologie (KIT)
Im Beitrag genannter Artikel: Rolf Seifert, Hubert B. Keller, Navas Illyaskutty, Jens Knoblauch, Heinz Kohler: Numerical Signal Analysis of Thermo-Cyclically Operated MOG Gas Sensor Arrays for Early Identification of Emissions from Overloaded Electric Cables. Sensors & Transducers Journal, Vol. 193, Issue 10, October 2015.